Rotational Mixing and Lithium Depletion

Marc Pinsonneault Ohio State University

> Collaborators: Jeremy King, Lou Hobbs, Simon Schuler Pavel Denissenkov, Don Terndrup Joel Hartman Nik Andronov

Pre-MS Lithium Depletion

- Mass and composition trend predicted (Iben 1965)
- Long-standing problem: lithium dispersion in cool stars
 - Dispersion is real, not induced by activity (King et al. 2009)
 - Not from mixing

Lithium in the Pleiades (Soderblom et al. 1993) with varying spot covering factors

Culprit: Starspots

Pleiades Lithium Revisited

Implication: range of radii in pre-MS stars will cause a range of depletion rates

 Anomaly tied to pre-MS activity and rotation

Teff (K)

Where does rotation come from?

Initial Angular Momentum Mass assembly rate Interactions with accretion disk Impacted by - Environment Planet formation

Rebull et al. 2006: Correlation of IR excess with rotation period in ONC

Angular Momentum Evolution

Magnetized solar-like winds

- more efficient for rapid rotation
- Saturate at massdependent threshold
- Angular Momentum Transport and Mixing
 - Core eventually coupled to surface; three classes of mechanisms competitive

Tinker et al. 2002: ONC->Pleiades->Hyades

Fig. 1.— The cumulative distribution of $v \sin i$ for the projected sample of Pleiades stars is shown for 4 different saturation thresholds. The projected Pleiades is the solid line and the observed Hyades distribution is the dotted line.

Rotational Mixing and Lithium

Two mechanisms for inducing:

- Shears
- Meridional circulation
- Inhibited by mu gradients
 - Can interact with diffusion
- Key predictions:
 - Rate of depletion declines as stars spin down
 - Different rotation histories
 - -> Different depletion histories

Strong Arguments for Rotational Mixing: Timing and Dispersion

Fig. 8. log n(Li) as a function of mass for Be 32 (open circles), the Hyades (asterisks), M 67 (filled triangles), and NGC 188 (filled circles). The horizontal lines delimits the range covered by Pop. II stars considering the lowest and highest values of the plateau.

Sestito & Randich 2005

Randich et al.

2009: Be 32

The Problem

Standard and diffusive models are rigorous but incomplete Nonstandard models are more complete, but not rigorous

Convergence in Rotation Rates of Solar Analogs is Clearly Seen

Interesting Coupling Timescale Rapid rotators are strongly coupled Slow rotator spindown is strongly inconsistent with SB rotation $-\tau \sim 50 \text{ Myr}$

> Denissenkov et al. 2009 (astro-ph/0911.1121)

Implications for Lithium Depletion

- Internal rotation convergences on a timescale comparable to that for surface rotation
 - Dispersion is generated early in the lifetime of a star
- Predicted magnitude of dispersion is therefore sensitive to
 - Angular momentum loss
 - Accretion disk properties

Interaction of Rotation and Settling

- Required to understand helioseismology (Richard et al. 1988)
- Stalling of lithium depletion in old open clusters (Randich & Sestito 2005)
- Much recent evidence for settling in globular cluster stars (Korn et al. 2007)
- Diffusion expected late, rotational mixing expected early

On Halo Lithium Depletion

V(Li) = 12 + log(Li/H)

0

6500

- Basic issue: Pop II pattern does not look like the Pop I pattern
- Taken as evidence that the Pop II stars are undepleted
 - Very difficult to understand from stellar interiors point of view
 Halo field
 Chorburn 1994
- Diffusion (late ages) can add to mixing (early)
- Major uncertainty: rotational properties of halo stars (dispersion/depletion) relationship
- Testable in halo tidally synchronized binaries

M67 (Jones et al. 1999)

6000

5500

T. (K)

Binary Interactions & Ultra-Depleted Stars

- Persistent population of highly Li depleted halo stars (e.g. Thorburn 1994)
- Blue stragglers are highly depleted (Ryan et al. 2002)
- Fraction is consistent with predictions from blue straggler counts (Andronov et al. 2006)

Fraction of sub-turnoff merger products (Andronov, Pinsonneault & Terndrup 2006)

There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact

Cluster vs. field: differences in disk lifetimes?
Planet host vs. no planet host: planet formation impacts disk

evolution?

